We study the effect of a magnetic flux in a 1D disordered wire with long range hopping. It is shown that this model is at the metal-insulator transition (MIT) for all disorder values and the spectral correlations are given by critical statistics. In the weak disorder regime a smooth transition between orthogonal and unitary symmetry is observed as the flux strength increases. By contrast, in the strong disorder regime the spectral correlations are almost flux independent. It is also conjectured that the two level correlation function for arbitrary flux is given by the dynamical density-density correlations of the Calogero-Sutherland (CS) model at finite temperature. Finally we describe the classical dynamics of the model and its relevance to quantum chaos.