Abstract

It is shown how Luttinger liquids may be studied using sea-bosons. The main advantage of the sea-boson method is its ability to provide information about short-wavelength physics in addition to the asymptotics and is naturally generalisable to more than one dimension. In this article, we solve the Luttinger model and the Calogero-Sutherland model, the latter in the weak-coupling limit. The anomalous exponent we obtain in the former case is identical to the one obtained by Mattis and Lieb. We also apply this method to solve the two-dimensional analog of the Luttinger model and show that the system is a Landau Fermi liquid. Then we solve the model of spinless fermions in one-dimension with long-range (gauge) interactions and map the Wigner crystal phase of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.