We introduce a family of classical integrable systems describing dynamics of M interacting glN integrable tops. It extends the previously known model of interacting elliptic tops. Our construction is based on the GLNR-matrix satisfying the associative Yang-Baxter equation. The obtained systems can be considered as extensions of the spin type Calogero-Moser models with (the classical analogues of) anisotropic spin exchange operators given in terms of the R-matrix data. In N = 1 case the spin Calogero-Moser model is reproduced. Explicit expressions for glNM -valued Lax pair with spectral parameter and its classical dynamical r-matrix are obtained. Possible applications are briefly discussed.