Abstract
In this paper we discuss R-matrix-valued Lax pairs for slN Calogero–Moser model and their relation to integrable quantum long-range spin chains of the Haldane–Shastry–Inozemtsev type. First, we construct the R-matrix-valued Lax pairs for the third flow of the classical Calogero–Moser model. Then we notice that the scalar parts (in the auxiliary space) of the M-matrices corresponding to the second and third flows have form of special spin exchange operators. The freezing trick restricts them to quantum Hamiltonians of long-range spin chains. We show that for a special choice of the R-matrix these Hamiltonians reproduce those for the Inozemtsev chain. In the general case related to the Baxter's elliptic R-matrix we obtain a natural anisotropic extension of the Inozemtsev chain. Commutativity of the Hamiltonians is verified numerically. Trigonometric limits lead to the Haldane–Shastry chains and their anisotropic generalizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.