The persistence of the artificial sweetener acesulfame potassium (ACE) during wastewater treatment and subsequently in the aquatic environment has made it a widely used tracer of wastewater inputs to both surface water and groundwater. However, the recently observed biodegradation of ACE during wastewater treatment has questioned the validity of this application. In this study, we assessed the use of ACE not only as a marker of wastewater, but also as a transient wastewater tracer that allows both the calculation of mixing ratios and travel times through the aquifer as well as the calibration of transient groundwater flow and mass transport models. Our analysis was based on data obtained in a nearly 8-year river water and groundwater sampling campaign along a confirmed wastewater-receiving riverbank filtration site located close to a drinking water supply system. We provide evidence that temperature controls ACE concentration and thus its seasonal oscillation. River water data showed that ACE loads decreased from 1.5–4 mg·s−1 in the cold season (December to June; T<10 °C) to 0–0.5 mg·s−1 in the warm season (July to November; T>10 °C). This seasonal variability of >600% was detectable in the aquifer and preserved >3 km, with ACE concentrations oscillating between <LOQ in the warm season up to 1 μg·L−1 in the cold season. The large seasonal variation in ACE concentrations during wastewater treatment, compared to the other sweeteners (sucralose, cyclamate, and saccharin) and chloride enables its use as a transient tracer of wastewater inflows and riverbank filtration. In addition, the arrival time of the ACE concentration peak can be used to estimate groundwater flow velocity and mixing ratios, thereby demonstrating its potential in the calibration of groundwater numerical models.
Read full abstract