We propose for the first time the vapor diffusion method to deposit bioinspired calcium phosphate films on mineral substrates, that is, delaminated mica muscovite sheets and to assess the capability of these films to affect the nucleation and growth of lysozyme crystals. Deposited calcium phosphate layers were composed of octacalcium phosphate (OCP) and apatite (Ap) nanocrystals, with increased amount of OCP at higher crystallization times. In the presence of poly(acrylic acid) (PAA) deposited layers were composed of amorphous calcium phosphate (ACP). Results of lysozyme crystallization showed that OCP/Ap-coated mica sheets slowed down the nucleation process without altering significantly the number of nucleated crystals per droplet respect to the uncoated control. ACP-coated mica sheets acted as an inhibitor, thus delaying the nucleation and reducing in addition the number of crystals. These results contrasted with the nucleation induction effect observed when calcium phosphate nanopowders were added to ...
Read full abstract