Abstract
Calcium phosphate is a widely used material as coating for metallic implants. This research describes a biomimetic coating techniques based on deposition of calcium phosphate films on a Ti6Al4V plates that was used to study the effect of strontium additive on the behavior of hMSCs. In this study, strontium additive was homogenously deposited onto calcium phosphate films on a Ti6AlV plates by using a biomimetic techniques. Strontium affected composition and morphology of calcium phosphate deposited on a Ti6Al4V plates to a varying degree, according to concentration of solutions used. The effect of strontium additive on proliferation and differentiation of hMSCs depended on the solution and concentration tested. In general, all individual three coatings showed decreased hMSCs proliferation. Strontium additive demonstrated a significant increase in differentiation into osteogenic lineage when compared with the control and calcium phosphate films without strontium additive. However, no cytotoxic effect of strontium additive in the concentrations tested was detected. The Fourier transform infrared spectra showed that this new coating closely resembles bone mineral. The techniques illustrated in this study mimics bone mineral containing strontium additive, making it constructive for studying basic processes of in vitro bone formation. The results showed in this study can be used for changing bone graft substitutes by addition of strontium additive on implants in order to affect their performance in bone repair and regeneration. Also, the system can aid rapid bone formation around the implant, reducing therewith the patient’s recovery time after surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomimetics, Biomaterials and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.