The mitochondrial Ca2+ uniporter is the Ca2+ channel responsible for mitochondrial Ca2+ uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca2+ signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca2+ concentrations. It has been known for decades that spermine, a biological polyamine ubiquitously present in animal cells, can enhance mitochondrial Ca2+ uptake, but the underlying mechanisms remain incompletely understood. In this study, we demonstrate that spermine exerts both potentiation and inhibitory effects on the uniporter. At physiological concentrations, spermine binds to membranes and disrupts MCU-MICU1 interactions, thereby opening the uniporter to import more Ca2+. However, at millimolar concentrations, spermine also inhibits the uniporter by targeting the pore-forming region in a MICU1-independent manner. These findings provide molecular insights into how cells can use spermine to control the critical processes of mitochondrial Ca2+ signaling and homeostasis.
Read full abstract