Cahn–Hilliard–Navier–Stokes (CHNS) systems describe flows with two-phases, e.g., a liquid with bubbles. Obtaining constitutive relations for general dissipative processes for such systems, which are thermodynamically consistent, can be a challenge. We show how the metriplectic 4-bracket formalism (Morrison and Updike, 2024) achieves this in a straightforward, in fact algorithmic, manner. First, from the noncanonical Hamiltonian formulation for the ideal part of a CHNS system we obtain an appropriate Casimir to serve as the entropy in the metriplectic formalism that describes the dissipation (e.g. viscosity, heat conductivity and diffusion effects). General thermodynamics with the concentration variable and its thermodynamics conjugate, the chemical potential, are included. Having expressions for the Hamiltonian (energy), entropy, and Poisson bracket, we describe a procedure for obtaining a metriplectic 4-bracket that describes thermodynamically consistent dissipative effects. The 4-bracket formalism leads naturally to a general CHNS system that allows for anisotropic surface energy effects. This general CHNS system reduces to cases in the literature, to which we can compare.
Read full abstract