Abstract

The Cahn-Hilliard Navier-Stokes (CHNS) system provides a computationally tractable model that can be used to effectively capture interfacial dynamics in two-phase fluid flows. In this work we present a semi-implicit, projection-based finite element framework for solving the CHNS system. We use a projection-based semi-implicit time discretization for the Navier-Stokes equation and a fully-implicit time discretization for the Cahn-Hilliard equation. We use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) formulation. Pressure is decoupled using a projection step, which results in two linear positive semi-definite systems for velocity and pressure, instead of the saddle point system of a pressure-stabilized method. All the linear systems are solved using an efficient and scalable algebraic multigrid (AMG) method. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. The overall approach allows the use of relatively large time steps with much faster time-to-solve than similar fully-implicit methods. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise and Rayleigh-Taylor instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call