Since even low-level environmental exposure to cadmium (Cd) can lead to numerous unfavourable health outcomes, including damage to the nervous system, it is important to recognize the risk of health damage by this xenobiotic, the mechanisms of its toxic influence, and to find an effective protective strategy. This study aimed to evaluate, in a female Wistar rat model of current human environmental exposure to Cd (1 and 5 mg/kg of diet for 3-24 months), if the low-to-moderate treatment with this element can harm the brain and whether the supplementation with a 0.1% Aronia melanocarpa L. (Michx.) Elliott berries (chokeberries) extract (AE) can protect against this effect. The exposure to Cd modified the values of various biomarkers of neurotoxicity, including enzymes (acetylcholinesterase (AChE), sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), phospholipase A2 (PLA2), and nitric oxide synthase 1 (NOS1)) and non-enzymatic proteins (calmodulin (CAM), nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (KEAP1)) crucial for the functioning of the nervous system, as well as the concentrations of calcium (Ca) and magnesium (Mg) and some metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in the brain tissue. The co-administration of AE, partially or entirely, protected from most of the Cd-induced changes alleviating its neurotoxic influence. In conclusion, even low-level chronic exposure to Cd may adversely affect the nervous system, whereas the supplementation with A. melanocarpa berries products during the treatment seems a protective strategy.
Read full abstract