Abstract

Cadmium (Cd) is a heavy metal ion leading to morphological and physiological disorders in plants; a specific toxicity target is the membrane lipids. The total lipids were separated by thin-layer chromatography, and the fatty acid composition of the total (TLs), polar lipids (PLs) and triacylglycerol (TAG)-a neutral lipid-was analyzed in maize seedlings in hydroponics and treated by various Cd concentrations (0-200µM Cd). The TLs and PLs significantly decreased in roots after Cd treatment, suggesting the onset of lipid peroxidation mediated by oxygen free radicals, that induce alterations of the membrane structure and function. There were also increases in the TAG from 28.2 to 36.9% of TLs, and the TAG/PLs ratio varied from 0.59 to 0.84, in control and after exposure to 200µM Cd, respectively. The TAG plays potent roles in membrane turnover serving as energy and carbon resources for the biosynthesis of membrane lipids, to preserve membrane structure and function, and therefore cell homeostasis in response to Cd. In shoots, a significant increase in the levels of C16:0, C18:1, and C18:2, while a decrease in that of C18:3was observed, suggesting inhibition of desaturases enzymes. These lead to impairment of the chloroplast membrane. The total lipid content did not change under Cd stress. The PLs, however, decreased from 22.4 to 13.6mgg-1 DW; their percent to TLs varied from 86.6 to 52.5%, in control, and after Cd treatment, respectively. In conclusion, the accumulation of TAG may represent a defense strategy by which maize seedlings can withstand the effects of Cd toxicity, leading to reduced oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.