Electrical cables are a potential source of ignition and fire hazards in various types of buildings and industrial installations, as well as in all modes of transportation, including aircraft. Fires in buildings pose the greatest threat to human life and health. The composition of thermal degradation products depends mainly on the type of combustible materials and the type of combustion process—flaming or smoldering. The purpose of this paper was to determine, based on experimental studies, the effects of flaming and smoldering combustion on the response times of fire smoke detectors. In addition, the concentrations of fire gases formed in the process of duct combustion, including CO, SO2, NO2, NO, HCN, HCl, HBr and HF, were measured using an FTIR spectrometer. The results presented confirm the significant effect of the way the cable samples burned on detector tripping time. The highest concentration of smoke (Y) in the test chamber was obtained during flame combustion. It was further found that the characteristics of the cable insulation material used, such as the type of PVC, had a significant effect on the toxicity of the emitted gases. The largest amounts of toxic gases were emitted during the smoldering combustion of a cable with a plasticized PVC sheath.
Read full abstract