Abstract

Thermal aging is one of the main reasons for the degradation of insulation properties of high voltage cable. Dielectric properties and breakdown strength are important parameters to reflect the insulation performance of the cable insulation materials. In the work, the influence of thermal aging on dielectric and breakdown performance of the cable insulation layer was studied. Firstly, XLPE cable insulation samples were prepared and the thermal aging treatment was carried out. Secondly, the microstructure and molecular structure of XLPE samples under different thermal aging time were analyzed. The dielectric properties and breakdown characteristics of XLPE samples under different thermal aging times were characterized in macro aspect. Finally, the effects of different temperatures on the molecular microstructure of XLPE were studied. The results show that with the extension of thermal aging time, the microstructure of XLPE molecule is destroyed, the macromolecular chain is gradually cleaved, and the carbonyl absorption intensity increases. At power frequency, the breakdown strength decreases from 75.37 kV/mm to 62.18 kV/mm, the relative permittivity increases from 2.44 to 2.51, and the dielectric loss increases from 1.47 × 10−4 to 3.10 × 10−3. The free volume rate of XLPE molecules increases with the increasing temperature, and the mean square displacement gradually increases. The work has good guiding significance for the safe operation and condition assessment of high-voltage cables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call