Background:Translaminar screw fixation has become an alternative in the fixation of the axial and subaxial cervical spine. We report utilization of this approach in the atlas as a salvage technique for atlantoaxial stabilization when C1 lateral mass screws are precluded. To assess the feasibility of translaminar fixation at the atlas, we have characterized the dimensions of the C1 lamina in the general adult population using computed tomography (CT)-based morphometry.Methods:A 46-year-old male with symptomatic atlantoaxial instability secondary to os odontoideum underwent bilateral C1 and C2 translaminar screw/rod fixation as C1 lateral mass fixation was precluded by an anomalous vertebral artery. The follow-up evaluation 2½ years postoperatively revealed an asymptomatic patient without recurrent neck/shoulder pain or clinical signs of instability. To better assess the feasibility of utilizing this approach in the general population, we retrospectively analyzed 502 consecutive cervical CT scans performed over a 3-month period in patients aged over 18 years at a single institution. Measurements of C1 bicortical diameter, bilateral laminar length, height, and angulation were performed. Laminar and screw dimensions were compared to assess instrumentation feasibility.Results:Review of CT imaging found that 75.9% of C1 lamina had a sufficient bicortical diameter, and 63.7% of C1 lamina had sufficient height to accept bilateral translaminar screw placement.Conclusions:CT-based measurement of atlas morphology in the general population revealed that a majority of C1 lamina had sufficient dimensions to accept translaminar screw placement. Although these screws appear to be a feasible alternative when lateral mass screws are precluded, further research is required to determine if they provide comparable fixation strength versus traditional instrumentation methods.