Let $M = S^n/ Γ$ and $h$ be a nontrivial element of finite order $p$ in $π_1(M)$, where the integer $n≥2$, $Γ$ is a finite group which acts freely and isometrically on the $n$-sphere and therefore $M$ is diffeomorphic to a compact space form. In this paper, we establish first the resonance identity for non-contractible homologically visible minimal closed geodesics of the class $[h]$ on every Finsler compact space form $(M, F)$ when there exist only finitely many distinct non-contractible closed geodesics of the class $[h]$ on $(M, F)$. Then as an application of this resonance identity, we prove the existence of at least two distinct non-contractible closed geodesics of the class $[h]$ on $(M, F)$ with a bumpy Finsler metric, which improves a result of Taimanov in [39] by removing some additional conditions. Also our results extend the resonance identity and multiplicity results on $\mathbb{R}P^n$ in [25] to general compact space forms.