Abstract

The existence of two geometrically distinct closed geodesics on an n-dimensional sphere \(S^n\) with a non-reversible and bumpy Finsler metric was shown independently by Duan and Long [7] and the author [25]. We simplify the proof of this statement by the following observation: If for some \(N \in \mathbb {N}\) all closed geodesics of index \(\le \)N of a non-reversible and bumpy Finsler metric on \(S^n\) are geometrically equivalent to the closed geodesic c, then there is a covering \(c^r\) of minimal index growth, i.e., $$\begin{aligned} \mathrm{ind}(c^\mathrm{rm})=m \,\mathrm{ind}(c^r)-(m-1)(n-1), \end{aligned}$$ for all \(m \ge 1\) with \(\mathrm{ind}\left( c^\mathrm{rm}\right) \le N.\) But this leads to a contradiction for \(N =\infty \) as pointed out by Goresky and Hingston [13]. We also discuss perturbations of Katok metrics on spheres of even dimension carrying only finitely many closed geodesics. For arbitrarily large \(L>0\), we obtain on \(S^2\) a metric of positive flag curvature carrying only two closed geodesics of length \(<L\) which do not intersect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.