A series of D-N=N-A type molecular glasses where the electron acceptor part (A) contains several electron withdrawing substituents, but the electron donating part (D) of the glassy azochromophores contains amorphous phase promoting non-conjugated bulky triphenyl or hydroxyl groups have been synthesized and investigated. Results showed that the azodye physical properties depend not only on the incorporated electron withdrawing substituents but are also influenced by the bonding type of covalently attached bulky moieties. Synthesized glassy azocompounds showed glass transition temperatures up to 106 °C and thermal stability up to 312 °C.The ability to form holographic gratings in spin-cast thin films of the glassy azodyes was investigated using 532 nm and 633 nm lasers obtaining diffraction efficiency up to 57%, self-diffraction efficiency up to 15% and photosensitivity as high as 3.7 J/(cm2%). Surface relief grating (SRG) depths reached 1.1 μm and in some cases even exceeded the thickness of the films.
Read full abstract