Abstract
The selective deoxygenation of polyols has emerged as an attractive approach to transform biomass-derived polyols into valuable building blocks. Herein, we present a theoretical study on the boron-catalyzed selective deoxygenation of terminal 1,2-diols. The computational results explain the different product distributions obtained with different silanes and unveil the critical role of the cyclic siloxane intermediate. Compared to noncyclic pathways, the cyclic pathway facilitates the initial deoxygenation process because the cyclic structure minimizes the steric repulsions between the reagents. It avoids overreduction because the generated bulky disiloxane moiety hinders the second deoxygenation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.