Bulk viscosity is the only viscous influence that can change the background dynamics in a homogeneous and isotropic universe. In the present work, we analyze the bulk viscous cosmological model with the bulk viscosity coefficient of the form zeta =zeta _0+zeta _1H+zeta _2left( frac{dot{H}}{H}+Hright) where, zeta _0, zeta _1 and zeta _2 are bulk viscous parameters, and H is the Hubble parameter. We investigate the impact of the bulk viscous parameter on dynamics of the universe in the recently proposed Weyl-type f(Q, T) gravity, where Q is the non-metricity, and T is the trace of the matter energy–momentum tensor. The exact solutions to the corresponding field equations are obtained with the viscous fluid and the linear model of the form f(Q, T)=alpha Q+frac{beta }{6kappa ^2}T, where alpha and beta are model parameters. Further, we constrain the model parameters using the 57 points Hubble dataset the recently released 1048 points Pantheon sample and the combination Hz + BAO + Pantheon, which shows our model is good congeniality with observations. We study the possible scenarios and the evolution of the universe through the deceleration parameter, the equation of state (EoS) parameter, the statefinder diagnostics, and the Om diagnostics. It is observed that the universe exhibits a transition from a decelerated to an accelerated phase of the universe under certain constraints of model parameters.
Read full abstract