Seasonal variabilities in hydrological fluxes of dissolved organic carbon (DOC) and their driving factors in the evergreen broad-leaved forest are inadequately understood. To aid this understanding, we conducted a three-year study to examine seasonal changes in DOC concentration and flux in throughfall, stemflow, and litter leachate in an evergreen broad-leaved subtropical forest in central Japan. We specifically addressed (1) how DOC in different hydrological fluxes vary on a monthly to seasonal basis, and (2) how canopy phenology and meteorology shape the DOC concentration and flux of throughfall, stemflow, and litter leachate trends in this evergreen forest. Clear seasonal changes were found in throughfall and stemflow DOC concentration but not in litter leachate DOC concentration; the highest throughfall DOC concentrations were observed in spring (10.03 mg L−1 in 2017 and 9.59 mg L−1 in 2018, respectively) and the highest stemflow DOC concentrations were observed in summer (13.95 mg L−1 in 2017 and 16.50 mg L−1 in 2018, respectively). Correlation analysis revealed the monthly throughfall DOC concentration to be positively related to the dry weight of fallen leaves (r = 0.72, p < 0.05) and flowers (r = 0.91, p < 0.05). In addition, Random Forest models predicted that the dry weight of flowers was a primary driver of throughfall DOC concentration and that the DOC concentrations of stemflow and litter leachate were constrained by the throughfall DOC concentration. DOC fluxes in different hydrological flux were significantly positive related to bulk precipitation amounts and temperature. Moreover, the throughfall DOC concentration had a considerable effect on throughfall and litter leachate DOC fluxes. Over 75% of annual net tree-DOC (throughfall + stemflow) fluxes and more than 70% of the annual litter leachate DOC fluxes were produced in the flowering season. Thus, we speculated that the seasonal phenological canopy changes (leaf emergence, fallen leaves, flowering, and pollen) and the sufficient rainfall had great impacts on the amount and quality of DOC concentrations in the evergreen forest; and, furthermore, that the DOC from different forest hydrological fluxes was a significant fraction of the carbon that accumulates in soils.
Read full abstract