Context Conversion of grasslands to croplands can usually result in the degradation of soils and increased greenhouse gas (GHG) emissions such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). However, little is known about the impacts of grassland conversion to recently tilled croplands on soils and GHG fluxes. Aims A field experiment was established in 2016 to evaluate the impacts of grassland conversion to tilled cropland under different landscape positions (upslope, backslope, and footslope) on select soil properties and soil GHG fluxes. Key results The findings showed that the grassland conversion significantly increased soil bulk density and electrical conductivity but reduced pH and total nitrogen (TN). The conversion impacted soil biome community grassland and tilled croplands. The landscape position significantly impacted soil pH (footslope < upslope) and TN (footslope > upslope). The grassland conversion significantly decreased soil CO2 fluxes, but increased soil CH4 and N2O fluxes. The landscape position significantly impacted soil CO2 (footslope > upslope and backslope) and CH4 (upslope > footslope and backslope) fluxes for some periods. Soil CO2 and N2O fluxes generally followed upward and downward trends over time, respectively. Conclusions These results indicate that grassland conversion was able to lose soil N, increase soil compaction, acidity, salts, and soil N2O and CH4 fluxes, and decrease the diversity of abundant genera and CO2 fluxes. Footslope increased TN, soil acidity, CO2, and CH4 fluxes, compared with upslope and backslope. CO2 fluxes under grassland and tilled cropland significantly increased over time, whereas N2O fluxes under grassland significantly reduced. Implications Conversion of grassland to tilled cropland significantly impacted on sol quality. It caused a loss in soil N and increased soil compaction, acidity and salts. Grassland conversion also decreased the abundance and diversity soil microbiome.