Here, we demonstrate a simple method to exfoliate layered molybdenum trioxide (MoO3) crystallites to give multilayer MoO3 nanosheets dispersed in solvents. Exfoliation is achieved by sonicating MoO3 powder in the presence of suitable solvents followed by centrifugation to remove undispersed material. This procedure works well in a range of solvents with Hildebrand solubility parameters close to 21 MPa1/2 and is consistent with the predictions of classical solubility theory. We have fully optimized this process and demonstrated methods to separate the resultant nanosheets by size. Raman spectroscopy suggests the exfoliation process does not damage the MoO3. This is supported by measurements showing that the reaggregated nanosheets display very similar photoluminescence to bulk MoO3. However, the dispersed nanosheets had distinctly different photoluminescence, indicating a decoupling of the monolayers on exfoliation. We have used liquid-exfoliated MoO3 to prepare supercapacitor electrodes that have relative...