In this paper, a novel micro-machined dual-axis tuning fork gyroscope (DTFG) with an anti-phase mechanism is proposed. The proposed anti-phase mechanism could effectively minimize the undesired lateral motion and ensure the anti-phase resonant mode of the two vibrating frames of DTFG. The gyroscope is fabricated by the high-aspect-ratio silicon-on-insulation bulk micromachining process with a device layer thickness of 45 μm. Furthermore, a CMOS drive/readout ASIC Chip, which is fabricated by a 0.25 μm 1P5M standard CMOS process, is integrated with the fabricated DTFG by direct wire-bonding. The experimental characterizations of DTFG demonstrate that the rate sensitivities of z-axis and x-axis sense modes are 2.2132 mV/DPS and 1.8477 mV/DPS respectively and the associated R2-linearity are 0.9995 and 0.9996.
Read full abstract