Here, a simple method of applying dimethylformamide (DMF) as cosolvent in the sol-gel technology is used to improve the quality of ZnO bulk films. First-principles calculations show that with the addition of polar solvent DMF, the adsorption energy (Eads) between the solvent and Zn(OH)₂ increases from -1.42 to -1.74eV, which can stabilize the existence of Zn(OH)₂, thereby promoting the ZnO synthesis. Besides, the elimination of amine residues in the DMF-ZnO film significantly suppress the photocatalytic activity induced by amine-induced coordination or redox reactions. Inverted organic solar cells (OSCs) based on PM6:Y6 and PM6:BTP-eC9 achieves impressive power conversion efficiencies (PCE) of 17.58 and 18.14%, respectively. Furthermore, benefiting from the reduced defects of bulk ZnO, pseudo-bilayer bulk heterojunction (PBHJ) devices based on the optimized ZnO film exhibited superior stability, the PM6:Y6 devices based on DMF-ZnO ETLs can maintain 90.28% of their initial PCE after 1000 h of thermal aging at 85°C, and 80.98% of their initial PCE after 168 h of UV aging. This simple solvent optimization strategy can significantly improve the charge transport of ZnO bulk films, making it a reliable strategy for the preparation of electron transport layers in OSCs.