Abstract
The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.