In response to land use challenges, major urban centers have started implementing over-track building constructions above metro lines as a means of accommodating residents and workers. However, the continuous operation of trains can generate excessive vibrations that may negatively impact the overall living conditions for occupants residing in these structures. In this paper, vibration measurements were conducted on the soil and within a three-story frame structure building. Additionally, a three-dimensional finite element model of the track–soil–building was established. The wheel–rail contact force was incorporated as a dynamic load that varies with time to accurately simulate the vibration response induced by trains. According to the construction process of the over-track building, four construction stages were set up using the finite element model to study the impact of the construction stages on the vibration propagation from the soil to building structure. The results indicate that the presence of existing structures exerts a mitigating influence on soil vibrations. Pile foundation construction can effectively mitigate soil vibration to a significant extent. The findings provide references for the future development and design of over-track buildings.
Read full abstract