AbstractImaging neural activity across a large (several mm) cortical area with high temporal and spatial resolution is desirable, for example in the auditory system to measure cortical processing across a broad frequency spectrum. Voltage-sensitive dye imaging (VSDI) has a unique combination of properties making this possible, but so far studies have been limited to studying simple sparsely-presented sensory stimuli. We demonstrate the feasibility of long-acquisition VSDI (using the dye RH-1691) in auditory cortex while presenting complex time-varying acoustic stimuli or silence. Using a dense array of partially-overlapping 50 ms tone pips (8 frequencies per octave spanning six octaves), we obtained high-resolution spectrotemporal receptive fields (STRFs) simultaneously across the majority of the guinea pig primary auditory cortical fields (A1 and DC). Long epochs of spontaneous activity were also measured, permitting a comparison of spontaneous activity patterns with functional architecture. By grouping all pixels in areas A1 and DC according to sound frequency preference (obtained from STRFs), we reveal that spontaneous activity (such as cortical spindles) show complex spatial patterns, which are organized according to sound frequency preference within and across cortical areas. More specifically, spontaneous activity correlation decreases as frequency preference diverges within A1 or DC; but additionally, pixels in A1 are also highly correlated with (even far-away) pixels in DC sharing similar frequency preference. These properties of patterned cortical spontaneous activity constrain mechanistic hypotheses regarding their genesis. Beyond these observations, the feasibility of VSDI with continuous stimulation or silence permits measuring population activity during long-lasting sound patterns, which is necessary for examining cortical dynamics and sensory-context dependent processing.