BackgroundLeaf nitrogen (N) and phosphorus (P) resorption is a fundamental adaptation strategy for plant nutrient conservation. However, the relative roles that environmental factors and plant functional traits play in regulating N and P resorption remain largely unclear, and little is known about the underlying mechanism of plant functional traits affecting nutrient resorption. Here, we measured leaf N and P resorption and 13 plant functional traits of leaf, petiole, and twig for 101 representative broad-leaved tree species in our target subtropical transitional forests. We integrated these multiple functional traits into the plant economics spectrum (PES). We further explored whether and how elevation-related environmental factors and these functional traits collectively control leaf N and P resorption.ResultsWe found that deciduous and evergreen trees exhibited highly diversified PES strategies, tending to be acquisitive and conservative, respectively. The effects of PES, rather than of environmental factors, dominated leaf N and P resorption patterns along the elevational gradient. Specifically, the photosynthesis and nutrient recourse utilization axis positively affected N and P resorption for both deciduous and evergreen trees, whereas the structural and functional investment axis positively affected leaf N and P resorption for evergreen species only. Specific leaf area and green leaf nutrient concentrations were the most influential traits driving leaf N and P resorption.ConclusionsOur study simultaneously elucidated the relative contributions of environmental factors and plant functional traits to leaf N and P resorption by including more representative tree species than previous studies, expanding our understanding beyond the relatively well-studied tropical and temperate forests. We highlight that prioritizing the fundamental role of traits related to leaf resource capture and defense contributes to the monitoring and modeling of leaf nutrient resorption. Therefore, we need to integrate PES effects on leaf nutrient resorption into the current nutrient cycling model framework to better advance our general understanding of the consequences of shifting tree species composition for nutrient cycles across diverse forests.
Read full abstract