Abstract
Climate change has had a widespread and profound impact on global temperature and precipitation patterns, especially in semi-arid areas. Plant δ13C and iWUE indicate the trade-off between carbon uptake and water loss, which is pivotal for understanding plant responses to climate change. Information about the long-term responses of the physiological and ecological processes of different tree species to climate change is also required. To investigate the impact of different forest stand structures and site conditions on long-term growth and physiological processes of coniferous and broad-leaved trees in the mountainous area of Beijing, we analyzed the tree-ring δ13C variation of four tree species (Platycladus orientalis, Pinus tabuliformis, Quercus variabilis, Robinia pseudoacacia) sampled from 64 plots with varying site and stand conditions. We found that the tree-ring δ13C of the four tree species varied from each other and was mainly affected by density and slope aspect, followed by slope and age. Both tree-ring δ13C and iWUE of the four tree species showed increasing trends over time, mechanistically linked to long-term changes in global CO2 concentration. This indicates the four native tree species have adapted well to climate change, and the risk of decline is relatively low. The increased iWUE translated into different growth patterns which varied with tree species, site, and stand condition. Different tree species have varying sensitivities to environmental factors. The iWUE of coniferous tree species is more sensitive to climate change than that of broad-leaved tree species, especially to temperature (T), the Standardized Precipitation Evapotranspiration Index (SPEI), and vapor pressure deficit (VPD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.