The use of a dense network of commercial high-cost seismographs for earthquake monitoring is often financially unfeasible. A viable alternative to address this limitation is the development of a network of low-cost seismographs capable of monitoring local seismic events with a precision comparable to that of high-cost instruments within a specified distance from the epicenter. The primary aim of this study is to compare the performance of an advanced, contemporary low-cost seismograph with that of a commercial, high-cost seismograph. The proposed system is enhanced through the integration of a 24-bit analog-to-digital converter board and an optimized architecture for a low-noise signal amplifier employing active components for seismic signal detection. To calibrate and assess the performance of the low-cost seismograph, an installation was deployed in a region of high seismic activity in Evgiros, Lefkada Island, Greece. The low-cost system was co-located with a high-resolution 24-bit commercial digitizer, equipped with a broadband (30 s—50 Hz) seismometer. An uninterrupted dataset was collected from the low-cost system over a period of more than two years, encompassing 60 local events with magnitudes ranging from 0.9 to 3.2, epicentral distances from 5.71 km to 23.45 km, and focal depths from 1.83 km to 19.69 km. Preliminary findings demonstrate a significant improvement in the accuracy of earthquake magnitude estimation compared to the initial configuration of the low-cost seismograph. Specifically, the proposed system achieved a mean error of ±0.087 when benchmarked against the data collected by the high-cost commercial seismograph. These results underscore the potential of low-cost seismographs to serve as an effective and financially accessible solution for local seismic monitoring.
Read full abstract