Phage therapy has the potential to alleviate plant bacterial wilt. However, the knowledge gap concerning the phage-agrochemical interaction impedes the broader application of phages in agriculture. This study characterized a phage isolate and investigated its interactions with agrochemicals. A novel species within the Ampunavirus genus was proposed, serving phage LPRS20 as a type phage with a broad lytic range and significant antibacterial activity against Ralstonia solanacearum strains infecting tobacco, chili, or tomato. Sensory evaluation of the morphology of tobacco leaves suggested that phage application resulted in negligible harm to plants. Investigations into phage-agrochemical interactions revealed synergisms when LPRS20 was delivered 4 h before thiodiazole-copper as well as LPRS20 in combination with low-concentration berberine. Overall, our findings reveal that phage LPRS20 represents a novel, effective, and eco-friendly biocontrol agent against tobacco bacterial wilt in vivo and in vitro and contributes to the potential integration of phages and agrochemicals for controlling soil-borne pathogens.