Abstract

Titanium (Ti)–based biomaterials lack inherent antimicrobial activities, and the dental plaque formed on the implant surface is one of the main risk factors for implant infections. Construction of an antibacterial surface can effectively prevent implant infections and enhance implant success. Silver nanoparticles (AgNPs) exhibit broad antibacterial activity and a low tendency to induce drug resistance, but AgNPs easily self-aggregate in the aqueous environment, which significantly impairs their antibacterial activity. In this study, UiO-66/AgNP (U/A) nanocomposite was prepared, where zirconium metal–organic frameworks (UiO-66) were employed as the confinement matrix to control the particle size and prevent aggregation of AgNPs. The bactericidal activity of U/A against methicillin-resistant Staphylococcus aureus and Escherichia coli increased nearly 75.51 and 484.50 times compared with individually synthesized Ag. The antibacterial mechanism can be attributed to the enhanced membrane rupture caused by the ultrafine AgNPs on UiO-66, leading to protein leakage and generation of intracellular reactive oxygen species. Then, U/A was loaded onto Ti substrates (Ti-U/A) by using self-assembly deposition methods to construct an antibacterial surface coating. Ti-U/A exhibited excellent antibacterial activities and desired biocompatibility both in vitro and in vivo. The U/A nanocomposite coating technique is thus expected to be used as a promising surface modification strategy for Ti-based dental implants for preventing dental implant infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.