Many countries have made pledges to reduce CO2 emissions over the upcoming decades to meet the Paris Agreement targets of limiting warming to no >1.5 °C, aiming for net zero by mid-century. To achieve national reduction targets, there is a further need for CO2 removal (CDR) approaches on a scale of millions of tonnes, necessitating a better understanding of feasible methods. One approach that is gaining attention is geochemical CDR, encompassing (1) in-situ injection of CO2-rich gases into Ca and Mg-rich rocks for geological storage by mineral carbonation, (2) ex-situ ocean alkalinity enhancement, enhanced weathering and mineral carbonation of alkaline-rich materials, and (3) electrochemical separation processes. In this context, Spain may host a notionally high geochemical CDR capacity thanks to its varied geological setting, including extensive mafic-ultramafic and carbonate rocks. However, pilot schemes and large-scale strategies for CDR implementation are presently absent in-country, partly due to gaps in current knowledge and lack of attention paid by regulatory bodies. Here, we identify possible materials, localities and avenues for future geochemical CDR research and implementation strategies within Spain. This study highlights the kilotonne to million tonne scale CDR options for Spain over the rest of the century, with attention paid to chemically and mineralogically appropriate materials, suitable implementation sites and potential strategies that could be followed. Mafic, ultramafic and carbonate rocks, mine tailings, fly ashes, slag by-products, desalination brines and ceramic wastes hosted and produced in Spain are of key interest, with industrial, agricultural and coastal areas providing opportunities to launch pilot schemes. Though there are obstacles to reaching the maximum CDR potential, this study helps to identify focused targets that will facilitate overcoming such barriers. The CDR potential of Spain warrants dedicated investigations to achieve the highest possible CDR to make valuable contributions to national reduction targets.
Read full abstract