BackgroundAn electronic nose (eNose) can be used to detect volatile organic compounds (VOCs). Exhaled breath contains numerous VOCs and individuals’ VOCs mixtures create distinct breath profiles. Previous reports have shown that eNose can detect lung infections. Whether eNose can detect Staphylococcus aureus airway infections in breath of children with cystic fibrosis (CF) is currently unclear. MethodsIn this cross-sectional observational study, a cloud-connected eNose was used for breath profile analysis of clinically stable paediatric CF patients with airway microbiology cultures positive or negative for CF pathogens. Data-analysis involved advanced signal processing, ambient correction and statistics based on linear discriminant and receiver operating characteristics (ROC) analyses. ResultsBreath profiles from 100 children with CF (median predicted FEV1 91%) were obtained and analysed. CF patients with positive airway cultures for any CF pathogen were distinguishable from no CF pathogens (no growth or usual respiratory flora) with accuracy of 79.0% (AUC-ROC 0.791; 95% CI: 0.669–0.913) and between patients positive for Staphylococcus aureus (SA) only and no CF pathogen with accuracy of 74.0% (AUC-ROC 0.797; 95% CI: 0.698–0.896). Similar differences were seen for Pseudomonas aeruginosa (PA) infection vs no CF pathogens (78.0% accuracy, AUC-ROC 0.876, 95% CI: 0.794–0.958). SA- and PA-specific signatures were driven by different sensors in the SpiroNose suggesting pathogen-specific breath signatures. ConclusionsBreath profiles of CF patients with SA in airway cultures are distinct from those with no infection or PA infection, suggesting the utility of eNose technology in the detection of this early CF pathogen in children with CF.
Read full abstract