We give a geometric criterion to check the validity of the integral Tate conjecture for one-cycles on a smooth projective variety that is separably rationally connected in codimension one, and to check that the Brauer-Manin obstruction is the only obstruction to the local-global principle for zero-cycles on a separably rationally connected variety defined over a global function field. We prove that the Brauer-Manin obstruction is the only obstruction to the local-global principle for zero-cycles on all geometrically rational surfaces defined over a global function field, and to the Hasse principle for rational points on del Pezzo surfaces of degree four defined over a global function field of odd characteristic. Along the way, we also prove some results about the space of one-cycles on a smooth projective variety that is separably rationally connected in codimension one, which leads to the equality of the coniveau filtration and the strong coniveau filtration on degree 3 3 homology of such varieties.
Read full abstract