Abstract
AbstractFor a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.