Purpose. To enhance an in-house graphic-processing-unit accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS). Methods and materials. A module to simulate VPs passing through patient-specific aperture blocks was developed and integrated in VPMC based on simulation results of realistic particles (primary protons and their secondaries). To validate the aperture block module, VPMC was first validated by an opensource MC code, MCsquare, in eight water phantom simulations with 3 cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4 cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45 mm water equivalent thickness. Then, VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 c.c. with range of 0.4–43.3 c.c.). Finally, 3 typical patients were selected for robust optimization with aperture blocks using VPMC. Results. In the water phantoms, 3D gamma passing rate (2%/2 mm/10%) between VPMC and MCsquare was 99.71 ± 0.23%. In the patient geometries, 3D gamma passing rates (3%/2 mm/10%) between VPMC/MCsquare and RayStation MC were 97.79 ± 2.21%/97.78 ± 1.97%, respectively. Meanwhile, the calculation time was drastically decreased from 112.45 ± 114.08 s (MCsquare) to 8.20 ± 6.42 s (VPMC) with the same statistical uncertainties of ~0.5%. The robustly optimized plans met all the dose–volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 s and the subsequent on-the-fly ‘trial-and-error’ optimization procedure took only 71.4 s on average for the selected three patients. Conclusion. VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS.
Read full abstract