Activation of contralateral muscles by supraspinal neurons, or crossed activation, is critical for bilateral coordination. Studies in mammals have focused on the neural circuits that mediate cross activation of limb muscles, but the neural circuits involved in crossed activation of trunk muscles are still poorly understood. In this study, we characterized functional connections between reticulospinal (RS) neurons in the medial and lateral regions of the medullary reticular formation (medMRF and latMRF) and contralateral trunk motoneurons (MNs) in the thoracic cord (T7 and T10 segments). To do this, we combined electrical microstimulation of the medMRF and latMRF and calcium imaging from single cells in an ex vivo brain stem-spinal cord preparation of neonatal mice. Our findings substantiate two spatially distinct RS pathways to contralateral trunk MNs. Both pathways originate in the latMRF and are midline crossing, one at the level of the spinal cord via excitatory descending commissural interneurons (reticulo-commissural pathway) and the other at the level of the brain stem (crossed RS pathway). Activation of these RS pathways may enable different patterns of bilateral trunk coordination. Possible implications for recovery of trunk function after stroke or spinal cord injury are discussed.NEW & NOTEWORTHY We identify two spatially distinct reticulospinal pathways for crossed activation of trunk motoneurons. Both pathways cross the midline, one at the level of the brain stem and the other at the level of the spinal cord via excitatory commissural interneurons. Jointly, these pathways provide new opportunities for repair interventions aimed at recovering trunk functions after stroke or spinal cord injury.