Abstract

Neonatal respiratory impairment during infection is common, yet its effects on respiratory neural circuitry are not fully understood. We hypothesized that the timing and severity of systemic inflammation is positively correlated with impairment in neonatal respiratory activity. To test this, we evaluated time- and dose-dependent impairment of in vitro fictive respiratory activity. Systemic inflammation (induced by lipopolysaccharide, LPS, 5 mg/kg, i.p.) impaired burst amplitude during the early (1 h) inflammatory response. The greatest impairment in respiratory activity (decreased amplitude, frequency, and increased rhythm disturbances) occurred during the peak (3 h) inflammatory response in brainstem-spinal cord preparations. Surprisingly, isolated medullary respiratory circuitry within rhythmic slices showed decreased baseline frequency and delayed onset of rhythm only after higher systemic inflammation (LPS 10 mg/kg) early in the inflammatory response (1 h), with no impairments at the peak inflammatory response (3 h). Thus, different components of neonatal respiratory circuitry have differential temporal and dose sensitivities to systemic inflammation, creating multiple windows of vulnerability for neonates after systemic inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.