The cerebral content of the biogenic amines, dopamine (DA), norepinephrine (NE), and serotonin (5-HT) and their catabolites 30 min after CRF or saline injections was determined using HPLC with electrochemical detection. Injection of CRF (1.0 μg) into the lateral ventricles (ICV) of mice produced a behavioral activation in which their motor movements appeared as bursts of activity followed by periods of immobility. CRF administration (ICV or SC) did not alter the concentrations of DA, NE, tryptophan, 5-HT, or 5-hydroxyindoleacetic acid (5-HIAA) in any brain region measured. ICV CRF increased the concentrations of dihydroxyphenylacetic acid (DOPAC), the major catabolite of DA, and of 3-methoxy,4-hydroxyphenylethyleneglycol (MHPG), the major catabolite of NE, in several brain regions. DOPAC:DA ratios were consistently increased in prefrontal cortex, septum, hypothalamus, and brain stem relative to animals injected with saline. MHPG:NE ratios were also increased in the prefrontal cortex and hypothalamus, with a marginal effect ( p=0.06) in brain stem. SC CRF significantly increased DOPAC:DA in prefrontal cortex, and MHPG:NE in prefrontal cortex, hypothalamus and brain stem. Pretreatment with naloxone did not prevent any of the neurochemical responses to ICV CRF, but naloxone alone increased DOPAC:DA in medial profrontal cortex, and decreased MHPG:NE in nucleus accumbens in CRF-injected mice. These results suggest that administration of CRF either centrally or peripherally induces an activation of both dopaminergic and noradrenergic systems in several regions of mouse brain. The pattern resembles that we observe in mice following stressful treatments such as footshock or restraint, but the effect of CRF on noradrenergic systems is less pronounced. Also, brain free tryptophan which is consistently increased in all brain regions by footshock or restraint was not altered by CRF. Thus CRF triggers a response in CNS catecholamine systems that resembles, but does not precisely mimic, that observed following commonly used stressors. This activation of CNS catecholamine metabolism may be related to some of the behavioral effects of CRF, but not all of them because naloxone, which prevents the effects of CRF on exploratory behavior, did not alter the catecholamine responses to CRF.
Read full abstract