Central Nervous System (CNS) tumors represent a significant public health concern due to their high morbidity and mortality rates. Magnetic Resonance Imaging (MRI) has emerged as a critical non-invasive modality for the detection, diagnosis, and management of brain tumors, offering high-resolution visualization of anatomical structures. Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have shown potential in augmenting MRI-based diagnostic accuracy for brain tumor detection. In this study, we evaluate the diagnostic performance of six fundamental MRI sequences in detecting tumor-involved brain slices using four distinct CNN architectures enhanced with transfer learning techniques. Our dataset comprises 1646 MRI slices from the examinations of 62 patients, encompassing both tumor-bearing and normal findings. With our approach, we achieved a classification accuracy of 98.6%, underscoring the high potential of CNN-based models in this context. Additionally, we assessed the performance of each MRI sequence across the different CNN models, identifying optimal combinations of MRI modalities and neural networks to meet radiologists' screening requirements effectively. This study offers critical insights into the integration of deep learning with MRI for brain tumor detection, with implications for improving diagnostic workflows in clinical settings.
Read full abstract