Abstract

Photodynamic therapy (PDT) is useful for various cancers such as high-grade glioma and cancers of other organs. However, the mechanism of tumor-specific accumulation of porphyrin is not clear. The authors previously reported that heme carrier protein 1 (HCP1) contributes to the transport of porphyrins; specifically, we showed that the production of cancer-specific reactive oxygen species from mitochondria (mitROS) leads in turn to enhanced HCP1 expression. Indomethacin (IND), a non-steroidal anti-inflammatory drug, increases ROS production by affecting mitochondrial electron transfer system. In the present work, the authors investigated the effect of pretreatment with IND on cancer-specific porphyrin accumulation, using both a glioma cell line and a rat brain tumor model. This work demonstrated that exposure of a rat glioma cell to IND results in increased generation of cancer-specific mitROS and accumulation of HCP1 expression and porphyrin concentration. Additionally, systemic dosing of a brain tumor animal model with IND resulted in elevated cellular accumulation of porphyrin in tumor cell. This is an effect not seen with normal brain tissue. Thus, the administration of IND increases intracellular porphyrin concentrations in tumor cell without exerting harmful effects on normal brain tissue, and increased porphyrin concentration in tumor cell may lead to improved PDT effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call