Childhood obesity is related to a cascade of neuroendocrine inflammatory changes. However, there remains a gap in the current literature regarding the possible occurrence of these changes in overweight/obese infants. The objective of this study was to evaluate adipokines, cortisol, brain-derived neurotrophic factor (BDNF) and redox status in overweight/obese infants versus normal-weight peers. A cross-sectional study was conducted with 50 infants (25 in the overweight/obese group and 25 in the normal-weight group) between 6 and 24 months. Plasma levels of leptin, adiponectin, resistin, soluble tumor necrosis factor (TNF) receptors, chemokines, BDNF, serum cortisol and redox status were measured. Unpaired Student's t-test was used to analyze the results and a probability of p<0.05 was acceptable for rejection of the null hypothesis. The Pearson correlation was used to verify the association between the biomarkers analyzed in each group. Plasma levels of leptin (p = 0.0001), adiponectin (p = 0.0007) and BDNF (p = 0.003), and serum cortisol (p = 0.048) were significantly higher in overweight/obese infants than normal-weight infants. In contrast, the concentration of thiobarbituric acid reactive substances (TBARS) (p = 0.004), and catalase (p = 0.045) and superoxide dismutase activity (p = 0.02) were lower in overweight/obese infants than normal-weight peers. All the results together indicate neuroendocrine inflammatory response changes in overweight/obese infants between 6 and 24 months. Although there is already an environment that predisposes for a subsequent pro-inflammatory response, neuroendocrine secretion changes that permit the control of the inflammatory process in this age interval can be observed.
Read full abstract