BackgroundMutations that alter splicing of X-linked ATP6AP2 cause a spectrum of neurodevelopmental and neurodegenerative pathologies including parkinsonism in affected males. All previously reported splicing mutations increase the level of a minor isoform with skipped exon 4 (Δe4) that encodes a functionally deficient protein. ObjectivesWe investigated the pathogenic mechanism of a novel c.168+6T>A variant reported in a family with X-linked intellectual disability, epilepsy, and parkinsonism. We also analyzed ATP6AP2 splicing defects in brains of carriers of a c.345C>T variant associated with X-linked spasticity and parkinsonism. MethodsWe generated induced pluripotent stem cells from patients with c.168+6T>A, reprogrammed them to neural progenitor cells and analyzed them by RNA-Seq and qRT-PCR. We also quantified ATP6AP2 isoforms in the brains of c.345C>T carriers by Nanostring nCounter. ResultsThe c.168+6T>A increased skipping of ATP6AP2 exon 2 and usage of cryptic intronic donor splice sites. This results in out-of-frame splicing products and a reciprocal 50% reduction in functional full-length ATP6AP2 transcripts. Neural progenitors of patients with c.168+6T>A exhibited downregulated neural development gene networks. Analysis of blood transcriptomes of c.168+6T>A carriers identified potential biomarkers of ATP6AP2 deficiency in non-neural tissues. The c.345C>T variant increased exon 4 skipping with concomitant decrease of full length ATP6AP2 in brains of carriers. ConclusionA common pathogenic consequence of splicing mutations affecting inclusion of different ATP6AP2 exons is reduction of the functional full-length transcript. The exacerbated ATP6AP2 splicing defect in brains of c.345C>T carriers is consistent with their CNS-restricted clinical presentations.
Read full abstract