Abstract

Deregulation of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) plays a significant role in developmental brain defects, early-onset neurodegeneration, neuronal cell loss, dementia, and several types of cancer. Herein, we report the discovery of three new classes of N-heterocyclic DYRK1A inhibitors based on the potent, yet toxic kinase inhibitors, harmine and harmol. An initial in vitro evaluation of the small molecule library assembled revealed that the core heterocyclic motifs benzofuranones, oxindoles, and pyrrolones, showed statistically significant DYRK1A inhibition. Further, the utilization of a low cost, high-throughput functional genomic in vivo model system to identify small molecule inhibitors that normalize DYRK1A overexpression phenotypes is described. This in vivo assay substantiated the in vitro results, and the resulting correspondence validates generated classes as architectural motifs that serve as potential DYRK1A inhibitors. Further expansion and analysis of these core compound structures will allow discovery of safe, more effective chemical inhibitors of DYRK1A to ameliorate phenotypes caused by DYRK1A overexpression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.