The growing popularity of brachytherapy has greatly increased the use of single-entry balloon catheter devices for delivery of accelerated partial breast radiotherapy (APBI). To facilitate delayed, postoperative, percutaneous insertion of single-entry brachytherapy catheters, many surgeons elect to place temporary, expandable cavity evaluation devices (CED) at the time of lumpectomy to preserve the surgical cavity and maintain a tract between the skin and surgical cavity. At the time of brachytherapy catheter placement, the CED may be deflated, withdrawn from the cavity, and easily replaced by a single-entry brachytherapy catheter inserted through the very same tract. In their article, ‘‘Spacer Balloons prior to Partial Breast Irradiation: Helpful or Hurtful?’’, Drs. Kuske and Zannis provide an excellent summary of the potential limitations and challenges associated with CED usage. While they have raised several important concerns, the authors’ emphasis on the potential negative aspects of CED placement misses the opportunity to provide sufficient guidance on how and when they may be properly used. Among the important concerns raised by the authors is the tendency of some surgeons to obtain multidisciplinary consultation only after CED placement. Preoperative discussion of the patient’s treatment options in a multidisciplinary setting or referring the patient to a radiation oncologist prior to surgery will provide the best opportunity for the patient and her oncologists to identify and fully discuss the options of lumpectomy, APBI, CED usage, and the implications of unsuitable pathology. This process not only helps to identify patients who are suboptimal candidates for APBI, but also allows coordination of surgery, catheter exchange, and radiation therapy planning to avoid the significant delays in the initiation of APBI that the authors identify as being contributory to devicerelated infections. Preoperative consultation also gives the patient the opportunity to discuss their potential participation in clinical trials that might be impacted by CED placement. Another compelling issue raised by the authors is the higher incidence of wound infection associated with intraoperative placement of a brachytherapy catheter (the open-cavity technique) compared with postoperative, percutaneous brachytherapy catheter placement (the closedcavity technique). However, the association between CED placement and infection is far from clear. In referencing the 2-year outcome data of the MammoSite Registry, the authors acknowledge that CED usage was not specifically addressed in the publication. Although it is reasonable for the authors to infer that intraoperative placement of a CED is analogous to open-cavity placement of a brachytherapy catheter in terms of its risk of infection, the results of the MammoSite Registry are confounded by the lack of clear guidelines regarding the use of antibiotics. In fact, only 71% of MammoSite Registry participants received antibiotics. Perhaps patients who had catheters placed intraoperatively were less likely to be prescribed oral antibiotics because they were routinely given a single dose of intravenous antibiotics preoperatively. Alternatively, it could be that patients who had catheters placed postoperatively were more likely to be prescribed postprocedural oral antibiotics because they did not receive the benefit of preprocedural intravenous antibiotics? The MammoSite Registry update does not elucidate these factors. Furthermore, since there is a finite risk (1–4%) of surgical-site infection after breast-conserving surgery, to what degree does the higher incidence of infection after the open-cavity technique reflect the combined result of postlumpectomy infection and catheter-related infection. Interestingly, the Society of Surgical Oncology 2011
Read full abstract