The complex flow field in the tip region of a turbomachine rotor, including the tip leakage flow and tip leakage vortex (TLV), has been studied for decades. Yet many associated phenomena are still not understood. This paper provides detailed data on the instantaneous and phase-averaged inner structures of the tip flow and evolution of the TLV. Observations are based on series of high resolution planar particle image velocimetry measurements performed in a transparent waterjet pump fitted into an optical refractive index-matched test facility. Velocity distributions and turbulence statistics are obtained in several meridional planes inside the rotor. We observe that the instantaneous TLV structure is composed of unsteady vortex filaments that propagate into the tip region of the blade passage. These filaments are first embedded into a vortex sheet, which is generated at the suction side of the blade tip, and then they wrap around each other and roll up into the TLV. We also find that the leakage vortex induces flow separation at the casing endwall and entrains the casing boundary layer with its counter-rotating vorticity. As it propagates in the rotor passage, the TLV migrates toward the pressure side of the neighboring blade. Unsteadiness associated with vortical structures is also investigated. We notice that, at early stages of the TLV evolution, turbulence is elevated in the vortex sheet, in the flow entrained from the endwall, and near the vortex core. Interestingly, the turbulence observed around the core is not consistent with the local distribution of turbulent kinetic energy production rate. This mismatch indicates that, given a TLV section, production likely occurs at preceding stages of the vortex evolution. Then, the turbulence is convected to the core of the TLV, and we suggest that this transport has substantial component along the vortex. We observe that the meandering of vortex filaments dominates the flow in the passage and we decompose the unsteadiness surrounding the TLV core to contributions from interlaced vortices and broadband turbulence. The two contributions are of the same order of magnitude. During late stages of its evolution, TLV breakdown occurs, causing rapid broadening of the phase-averaged core, with little change in overall circulation. Associated turbulence occupies almost half the width of the tip region of blade passage and turbulence production there is also broadly distributed. Proximity of the TLV to the pressure side of the neighboring blade also affects entrainment of flow into the incoming tip region.
Read full abstract