Abstract

An experimental analysis using three-dimensional laser Dopplervelocimetery (LDV) measurements and computational analysis usingthe Reynolds stress model of the commercial code, FLUENT, wereconducted to give a clear understanding on the structure of thetip leakage flow in a forward-swept axial-flow fan operating atthe peak efficiency condition, and to emphasize the necessity ofusing an anisotropic turbulence model for the accurate predictionof the tip leakage vortex. The rolling-up of the tip leakage flowwas initiated near the position of the maximum static pressuredifference, which was located at approximately 12% axial tipchord downstream from the leading edge of the blade, and developedalong the centerline of the pressure trough on the casing. Areverse flow between the blade tip and the casing due to the tipleakage vortex acted as a blockage on the through-flow. As aresult, high momentum flux was observed below the tip leakagevortex. As the tip leakage vortex proceeded to the aft part of theblade passage, the strength of the tip leakage vortex decreaseddue to the strong interaction with the through-flow and the casingboundary layer, and the diffusion of the tip leakage vortex byhigh turbulence. Through the comparative study of turbulencemodels, it was clearly shown that an anisotropic turbulence model,e.g., Reynolds stress model, should be used to predict reasonablyan anisotropic nature of the turbulent flow fields inside the tipleakage vortex. In comparison with LDV measurement data, thecomputed results predicted the complex viscous flow patternsinside the tip region in a reliable level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.