The interplay of hydrogen, vacancy and grain boundary plays an important role in hydrogen induced premature fracture in the metallic materials. In this work, two models with the representative high angle grain boundaries with the low and high grain boundary energy have been built according to the coincidence site lattice theory. The effects of hydrogen and hydrogen-vacancy combination on the deformation behaviors of the two models were investigated by means of molecular dynamics simulation with the straining direction vertical to the grain boundary. It is found that in both cases hydrogen tends to segregate and maintain a high local stress state around the grain boundary, and promote the premature fracture compared with the hydrogen-free model. Vacancy enhanced the effects of hydrogen in the model with grain boundary of the lower energy. However, vacancy promoted the dislocation evolution behavior in the model with grain boundary of the higher energy. The simulation results were further explained by considering the effects of hydrogen on the generalized stacking fault energy and the work of separation of the grain boundary.